The bond and cycle spaces of an infinite graph
نویسندگان
چکیده
Bonnington and Richter defined the cycle space of an infinite graph to consist of the sets of edges of subgraphs having even degree at every vertex. Diestel and Kühn introduced a different cycle space of infinite graphs based on allowing infinite circuits. A more general point of view was taken by Vella and Richter, thereby unifying these cycle spaces. In particular, different compactifications of locally finite graphs yield different topological spaces that have different cycle spaces. In this work, the Vella-Richter approach is pursued by considering cycle spaces over all fields, not just Z2. In order to understand “orthogonality” relations, it is helpful to consider two different cycle spaces and three different bond spaces. We give an analogue of the “edge tripartition theorem” of Rosenstiehl and Read and show that the cycle spaces of different compactifications of a locally finite graph are related.
منابع مشابه
The Cycle Spaces of an Infinite Graph
The edge space of a finite graph G = (V,E) over a field F is simply an assignment of field elements to the edges of the graph. The edge space can equally be thought of us an |E|-dimensional vector space over F. The cycle space and bond space are the subspaces of the edge space generated by the cycle and bonds of the graph respectively. It is easy to prove that the cycle space and bond space are...
متن کاملCycle spaces in topological spaces
We develop a general model of edge spaces in order to generalize, unify, and simplify previous work on cycle spaces of infinite graphs. We give simple topological criteria to show that the fundamental cycles of a (generalization of a) spanning tree generate the cycle space in a connected, compact, weakly Hausdorff edge space. Furthermore, in such a space, the orthogonal complement of the bond s...
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 59 شماره
صفحات -
تاریخ انتشار 2008